Inactivation of Ca(2+)/H(+) exchanger in Synechocystis sp. strain PCC 6803 promotes cyanobacterial calcification by upregulating CO(2)-concentrating mechanisms.
نویسندگان
چکیده
Cyanobacteria are important players in the global carbon cycle, accounting for approximately 25% of global CO2 fixation. Their CO2-concentrating mechanisms (CCMs) are thought to play a key role in cyanobacterial calcification, but the mechanisms are not completely understood. In Synechocystis sp. strain PCC 6803, a single Ca(2+)/H(+) exchanger (Slr1336) controls the Ca(2+)/H(+) exchange reaction. We knocked out the exchanger and investigated the effects on cyanobacterial calcification and CCMs. Inactivation of slr1336 significantly increased the calcification rate and decreased the zeta potential, indicating a relatively stronger Ca(2+)-binding ability. Some genes encoding CCM-related components showed increased expression levels, including the cmpA gene, which encodes the Ca(2+)-dependent HCO3(-) transporter BCT1. The transcript level of cmpA in the mutant was 30 times that in wild type. A Western blot analysis further confirmed that protein levels of CmpA were higher in the mutant than the wild type. Measurements of inorganic carbon fluxes and O2 evolution proved that both the net HCO3(-) uptake rate and the BCT1 transporter supported photosynthetic rate in the slr1336 mutant were significantly higher than in the wild type. This would cause the mutant cells to liberate more OH(-) ions out of the cell and stimulate CaCO3 precipitation in the microenvironment. We conclude that the mutation of the Ca(2+)/H(+) exchanger in Synechocystis promoted the cyanobacterial calcification process by upregulating CCMs, especially the BCT1 HCO3(-) transporter. These results shed new light on the mechanism by which CCM-facilitated photosynthesis promotes cyanobacterial calcification.
منابع مشابه
Comparative Genome Analysis of the Closely Related Synechocystis Strains PCC 6714 and PCC 6803
Synechocystis sp. PCC 6803 is the most popular cyanobacterial model for prokaryotic photosynthesis and for metabolic engineering to produce biofuels. Genomic and transcriptomic comparisons between closely related bacteria are powerful approaches to infer insights into their metabolic potentials and regulatory networks. To enable a comparative approach, we generated the draft genome sequence of ...
متن کاملA putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose.
The reason(s) for glucose sensitivity in certain cyanobacterial strains is poorly understood. Inactivation of genes encoding the putative sensor kinase Hik31 in Synechocystis sp. strain PCC 6803 resulted in a mutant unable to grow in the presence of D-glucose. Sensitivities to D-glucose, its analogue 2-deoxy-D-glucose, and fructose, were alleviated in mutants in which glcP, encoding the glucose...
متن کاملThe N-acetylmuramic acid 6-phosphate etherase gene promotes growth and cell differentiation of cyanobacteria under light-limiting conditions.
Inactivation of sll0861 in Synechocystis sp. strain PCC 6803 or the homologous gene alr2432 in Anabaena sp. strain PCC 7120 had no effect on the growth of these organisms at a light intensity of 30 micromol photons m(-2) s(-1) but reduced their growth at a light intensity of 5 or 10 micromol photons m(-2) s(-1). In Anabaena, inactivation of the gene also significantly reduced the rate of hetero...
متن کاملPurification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601.
Glutamine synthetases (GSs) from two cyanobacteria, one unicellular (Synechocystis sp. strain PCC 6803) and the other filamentous (Calothrix sp. strain PCC 7601 [Fremyella diplosiphon]), were purified to homogeneity. The biosynthetic activities of both enzymes were strongly inhibited by ADP, indicating that the energy charge of the cell might regulate the GS activity. Both cyanobacteria exhibit...
متن کاملRole of Spermidine in Overwintering of Cyanobacteria.
UNLABELLED Polyamines are found in all groups of cyanobacteria, but their role in environmental adaptation has been barely investigated. In Synechocystis sp. strain PCC 6803, inactivation of spermidine synthesis genes significantly reduced the survivability under chill (5°C)-light stress, and the survivability could be restored by addition of spermidine. To analyze the effects of spermidine on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 79 13 شماره
صفحات -
تاریخ انتشار 2013